

 Navigation

 	
 index

 	
 next |

 	ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual

ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual

	Introduction
	ECos

	Licence

	Supported features

	Version information

	Building the eCos kernel and applications
	Prerequisites

	Source code

	Preparing an .ecc file

	Building the kernel

	Application

	Tests

	Running an eCos application on Colibri VF61
	U-Boot over TFTP

	Linux over MQXBoot

	Appendix A: custom eCos configuration
	Background

	configtool

	Templates

	Preparing an .ecc file using configtool

	Startup memory choice

	Appendix B: POSIX and µITRON compatibility
	POSIX

	µITRON

 Copyright 2014 - Antmicro Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual

Introduction

This is a compilation and usage manual for the port of the eCos RTOS for the Toradex Colibri VF61 Freescale Vybrid Computer on Module [http://developer.toradex.com/product-selector/colibri-vf61].
It gives a brief overview on how to get the port, compile it and run an example program on the module using a Linux host.

The eCos port is targeted for the Cortex-M core of the heterogeneous Vybrid CPU, to provide a robust way to drive a real-time control setup, and is best combined with Linux or similar OS running on the Colibri VF61 Cortex-A core for handling non-critical outside communication, user interfaces etc.

ECos

ECos is a configurable RTOS intended for use in embedded applications.
The documentation for eCos 3.0, which is the most recent version of the system as well as the one ported to Colibri VF61, can be found at http://ecos.sourceware.org/docs-3.0/.

A comprehensive PDF eCos Reference Guide [http://ecos.sourceware.org/docs-3.0/pdf/ecos-3.0-ref-a4.pdf] is also available from the eCos website.

Licence

(based on the eCos licence overview [http://ecos.sourceware.org/license-overview.html])

ECos is released under a modified version of the well known GNU General Public License (GPL) [http://www.gnu.org/copyleft/gpl.html]. The eCos license is officially recognised as a GPL-compatible Free Software License. An exception clause has been added which limits the circumstances in which the license applies to other code when used in conjunction with eCos. The exception clause is as follows:

As a special exception, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other works to produce a work based on this file, this file does not by itself cause the resulting work to be covered by the GNU General Public License. However the source code for this file must still be made available in accordance with section (3) of the GNU General Public License.

This exception does not invalidate any other reasons why a work based on this file might be covered by the GNU General Public License.

The license does not require users to release the source code of any applications that are developed with eCos.

Supported features

This eCos port provides the following software packages specific for Toradex Colibri Vybrid VF61 Vybrid module:

	HAL package

	debug UART driver

	serial port driver

	Flex Timer Module

	GPIO handling

Also, the port has been verified to work with the standard eCos POSIX an µITRON compatibility layers.
See Appendix B: POSIX and µITRON compatibility for more information on this.

Version information

	Author
	Content
	Date
	Version

	Peter Katarzynski
	Draft version
	2014-03-21
	0.1.0

	Michael Gielda
	Revamp
	2014-03-27
	0.2.0

	Michael Gielda
	Prerequisites & compiling sample programs
	2014-03-27
	0.3.0

	Michael Gielda
	Running programs
	2014-03-28
	0.3.1

	Michael Gielda
	Further updates
	2014-04-02
	0.3.2

	Michael Gielda
	Further updates & Appendix B
	2014-04-07
	0.4.0

	Michael Gielda
	Cleanup & division into files
	2014-04-08
	0.5.0

	Michael Gielda
	Simplified instructions & making tests
	2014-04-11
	0.5.1

	Michael Gielda
	Added POSIX compatibility description
	2014-04-11
	0.5.2

 Copyright 2014 - Antmicro Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual

Building the eCos kernel and applications

This chapter describes how to build an eCos kernel and compile eCos applications for Colibri VF61.

The build process was tested on the Gentoo, Debian, Ubuntu and Mint Linux distributions.
The procedures described here should also work on other systems, but if you find any way to improve this manual with respect to tested platforms, please e-mail us at contact@antmicro.com.

Note

The code blocks below, when copy-pasted to a Linux terminal, should all work, provided they were called from the same directory.
To avoid confusion, it is best to call them from within a new, empty directory, e.g.:

mkdir ~/ecos-from-scratch
cd ~/ecos-from-scratch

Prerequisites

Toolchain

This port of eCos was prepared using a pre-built standard eCos toolchain, which can be obtained e.g. from the GWDG FTP server [ftp://ftp.gwdg.de/pub/misc/sources.redhat.com/ecos/gnutools/i386linux/test/].

wget ftp://ftp.gwdg.de/pub/misc/sources.redhat.com/ecos/gnutools/i386linux/test/\
ecos-gnutools-arm-eabi-20120623.i386linux.tar.bz2
tar xjvf ecos-gnutools-arm-eabi-20120623.i386linux.tar.bz2

Alternatively it is possible to compile eCos software using self-built toolchains as described on the eCos website [http://ecos.sourceware.org/getstart.html].

To compile eCos and eCos applications, the toolchain’s bin directory has to be included in the PATH variable.
The proper availability of the toolchain can be checked by finding out if arm-eabi-gcc is available from the shell.

ecosconfig

The ecosconfig tool, available from the eCosCentric website [http://www.ecoscentric.com/snapshots/ecosconfig-100305.bz2], is used to generate the build tree from the main repository and is a mandatory requirement.
ecosconfig requires the tcl compiler to work.

Installing tcl on Debian-based distributions

sudo apt-get install tcl8.5 # use sudo emerge dev-lang/tcl for Gentoo

Now you can download and use ecosconfig. You also need to make ecosconfig executable after downloading and extracting it from the archive. It is also a good idea to make it available system-wide by moving it to /usr/local/bin.

Installing ecosconfig

wget http://www.ecoscentric.com/snapshots/ecosconfig-100305.bz2
bunzip2 ecosconfig-100305.bz2
chmod +x ecosconfig-100305
sudo mv ecosconfig-100305 /usr/local/bin/ecosconfig

Warning

ecosconfig is a 32bit application, thus if you are using a 64bit OS you have to provide 32bit run-time libraries for compatibility. In a Debian-based Linux distributions these could be installed using the command sudo apt-get install ia32-libs.

Note

The output of ecosconfig are .ecc files which are in essence tcl scripts storing all the information on what elements will be included in the system image and how they will be configured.

Note

A handbook on ecosconfig [http://ecos.sourceware.org/docs-3.0/user-guide/using-ecosconfig-on-linux.html] exists to help in the manual creation of .ecc files.
Also, if you want to create custom eCos configuration files, see Appendix A: custom eCos configuration.

Source code

The source of the port can be downloaded by using the following command:

Downloading the Colibri VF61 eCos source

git clone https://github.com/mgielda/ecos-colibri-vf61.git

Preparing an .ecc file

The actual configuration of the eCos system is maintained and modified through ecosconfig.
The following commands will prepare a sample .ecc file for a kernel with default settings.

Generating the kernel ecc file from scratch

export ECOS_REPOSITORY="$PWD/ecos-colibri-vf61/ecos/packages"
Create ecos.ecc file based on Colibri VF61 default template
ecosconfig new col_vf61 default

You now have a ecos.ecc file that holds the default eCos configuration for Colibri VF61.
The file can be further edited manually with a text editor and/or ecosconfig or graphically using configtool (see Appendix A: custom eCos configuration), but at this moment it is already enough to compile a sample eCos kernel.

Building the kernel

The eCos kernel is built in two stages:

	first, a so-called build tree is generated from the eCos sources by ecosconfig.
The build tree is customized for your build as configured in the .ecc file used.
It is best to generate the build tree in a separate directory (here build-tree).

	then, the source files are compiled

Warning

When copy-pasting the following to the terminal, take care not to export the PATH variable multiple times.

Building the eCos kernel

export PATH="$PWD/gnutools/arm-eabi/bin:$PATH"
export ECOS_REPOSITORY="$PWD/ecos-colibri-vf61/ecos/packages"

mkdir -p build-tree
rm -rf build-tree/*
cd build-tree

ecosconfig --config=$PWD/../ecos.ecc tree
make
cd ..

The resulting kernel files can be found in build-tree/install/lib.

Application

With a compiled kernel files in the build-tree/install/lib directory (see Building the kernel), a user space eCos application can be compiled and linked to it.

A listing for a short sample application (taken from ecos-colibri-vf61/ecos/examples/hello.c) is given below.

hello.c - sample application

#include <stdio.h>

int main(void)
{
 printf("Hello, eCos world!\r\n");
 return 0;
}

You can compile an eCos program with a procedure similar to the following listing (which you can save for reuse, for example as make.sh):

Warning

When copy-pasting the following to the terminal, take care not to export the PATH variable multiple times.

Building a user space application

export PATH="$PWD/gnutools/arm-eabi/bin:$PATH"

Set compiler options
OPT="-Wall -Wpointer-arith -Wstrict-prototypes -Wundef \
 -Wno-write-strings -mthumb -g -O2 -fdata-sections \
 -ffunction-sections -fno-exceptions -nostdlib \
 -mcpu=cortex-m4"

Set path to eCos kernel
BTPATH="$PWD/build-tree"

Do compilation and link your application with kernel
arm-eabi-gcc -g -I./ -g -I${BTPATH}/install/include hello.c \
 -L${BTPATH}/install/lib -Ttarget.ld ${OPT}

Use objcopy to generate a binary
arm-eabi-objcopy -O binary a.out hello.bin

Tests

ECos is shipped with a test suite - in essence a set of simple programs checking various subsystems and interfaces - which can be easily compiled and run on the target.
These tests were used in the porting effort, and many (although not all) of them can be used as bases for user programs.

In order to compile tests, use the same procedure as described in Building the kernel, but issue make tests instead of make at the end.

The resulting tests will reside in the build-tree/install/tests directory.

 Copyright 2014 - Antmicro Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual

Running an eCos application on Colibri VF61

This chapter will explain how to run the eCos application on the Colibri VF61 Cortex-M core from the Cortex-A core in two ways: either from Linux using MQXBboot or from U-Boot using TFTP.

Vybrid has three available memory regions:

	OCRAM - 256KB - Default.

	DRAM - 10MB - Available, but needs limiting Linux RAM memory.

	TCML - 32KB - Small. Not recommended.

Note

Out of the 16MB of the DRAM memory in the CPU, 6MB was reserved for enabling the passing of large data blocks between Cortex-A and Cortex-M.
This setting can be changed in the mlt_vybrid_ext_dram.ldi file located in ecos/packages/hal/cortexm/vybrid/col_vf61/current/include/pkgconf/, by modifying the DRAM LENGTH and hal_startup_stack values (currently 0x9FFFF0).

U-Boot over TFTP

Set up TFTP on your host machine and put the binary to be loaded (for example, hello.bin) there. Make sure your host machine is connected to the network and you know its IP address.

Configuring U-Boot

Note

The memory restriction is mandatory only if DRAM is used to run eCos. See Startup memory choice for details.

Connect the module to the network with an Ethernet cable, power it on.
Enter U-Boot and then use the following command sequence:

dhcp # set module IP address
set memargs mem=240M # restrict Linux memory space
set serverip xxx.xxx.xxx.xxx # set TFTP server address
save # save the configuration

Running from U-Boot

The application can then be run over TFTP with the tftp command.
The two other mw commands will set the entry point and turn on the clocks, respectively.
OCRAM is recommended as default, but you may refer to Startup memory choice for information on what memory to use and how to get eCos to run from it.

OCRAM (default)

tftp 0x3f000400 hello.bin
mw.l 0x4006e028 0x1f000411
mw.l 0x4006b08c 0x00015a5a

DRAM

tftp 0x8f000400 hello.bin
mw.l 0x4006e028 0x0f000411
mw.l 0x4006b08c 0x00015a5a

TCML

tftp 0x1f800400 hello.bin
mw.l 0x4006e028 0x1f800411
mw.l 0x4006b08c 0x00015a5a

Linux over MQXBoot

Requirements

The following have to be present on the Cortex-A Linux (apart from the eCos binary) to make this method possible:

	mcc.ko kernel module

	mqxboot binary

Running from MQXBoot

The command to run the binary depends on the memory we want to use.
OCRAM is recommended as default, but you may refer to Startup memory choice for information on what memory to use and how to get eCos to run from it.

Loading to OCRAM (default)

mqxboot hello.bin 0x3f000400 0x1f000411

Loading to DRAM

mqxboot hello.bin 0x8f000400 0x0f000411

Loading to TCML

mqxboot hello.bin 0x1f800400 0x1f800411

 Copyright 2014 - Antmicro Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual

Appendix A: custom eCos configuration

ECos is called a configurable system for a reason: it contains a powerful infrastructure for choosing what system components and abstractions are included and how they are configured.

This Appendix will describe briefly how to deal with .ecc files for the Colibri VF61.

Background

The main tool used for building the eCos operating system is ecosconfig (see Prerequisites).
The source tree of eCos, called eCos repository (like for example the source code tree provided in this release) is not built directly but instead first trimmed down and configured to suit the needs of a specific user and platform using ecosconfig.
This static pick-and-build procedure allows the user to exclude these elements of the system which are not necessary, thus reducing the memory footprint.
This mechanism also enables easy configuration of system-wide variables and driver specific features.

What exactly can be included, excluded or configured is determined by the contents of .cdl files residing side by side with all source files in the eCos repository (usually in the cdl directory on the same level as the src directory of a given package, like a driver for a particular interface).

configtool

configtool is a GUI front-end to ecosconfig to facilitate the creation of eCos configuration files.
It also may be downloaded from eCosCentric [http://www.ecoscentric.com/snapshots/configtool-100305.bz2].

Warning

configtool (just like ecosconfig) is a 32bit application, thus if you are using a 64bit OS you have to provide 32bit run-time libraries for compatibility. In a Debian-based Linux distributions these could be installed using the command sudo apt-get install ia32-libs.

Warning

The official configtool version given above was found not to work on Arch Linux and Fedora Linux distributions. In case of problems, you can try a version from another source [https://github.com/flyskywhy/ecos-tools/raw/master/bin/configtool] or compile your own version [http://www.ecoscentric.com/devzone/configtool.shtml#linux].

Templates

While creating a new .ecc file it is easier to also use a predefined template representing common use scenarios, such as posix which represents a system which has all the necessary packages to run typical POSIX programs or redboot which understandably is used to build a binary of RedBoot, the eCos bootloader.

In order to select a template to base upon, use build ‣ templates.

Warning

Remember that the templates are just general scenarios, which may contain settings incompatible with the desired ones (baudrates, console mangling, debug console choice, presence of RedBoot ROM monitor). It is necessary to tweak them according to your needs.

Preparing an .ecc file using configtool

Launch configtool.

Select build ‣ repository specify the path to eCos repository (the packages directory).
Select the build ‣ template option and choose the Toradex Colibri VF61 as your hardware platform with default set of packages.
Click continue to proceed.

When the default set of packages is used for the platform, the associated .ecc file can already be prepared.
Save it in a directory accessible by your build script and remember to point to it in the kernel build script.

Other packages can be added from build ‣ packages, bear in mind that you may need to alter the chosen packages and options to satisfy some .cdl constraints.

Startup memory choice

There are three memories from which eCos software may be launched in Colibri VF61.
This is determined in the .ecc file the eCos kernel was based on.

By default the software is prepared to be launched from OnChip RAM (OCRAM).
Alternatively DRAM memory may be used for booting.
In this approach however the DDR memory block assigned to Linux must be limited to prevent Linux from accessing the memory region already occupied by eCos.
This may be achieved by altering the boot arguments from U-Boot as described in the section entitled Configuring U-Boot.

The OCRAM and DDR scenarios are recommended; alternatively you may also try to run eCos from TCML, but this method was not tested.
Besides, TCML offers a limited amount of memory which may be insufficient for many eCos applications.

To modify the startup memory scenario in the eCos kernel, configtool can be used.
The appropriate menu option is:

eCos HAL ‣ Cortex-M Architecture ‣ Freescale Vybrid Cortex-M4 Variant ‣ Toradex Colibri VF61 Platform ‣ Startup type

The associated parameters are:

	CYG_HAL_STARTUP_PLF (ByVariant / DRAM)

	CYG_HAL_STARTUP_VAR (OCRAM / TCML)

 Copyright 2014 - Antmicro Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual

Appendix B: POSIX and µITRON compatibility

By default, eCos allows the user to enable POSIX or µITRON compatibility, which may be beneficial for many applications.
This Appendix explains briefly how to use them with this eCos port.

For more information refer to the eCos Reference Guide [http://ecos.sourceware.org/docs-3.0/pdf/ecos-3.0-ref-a4.pdf], Chapters XIII and XIV.

POSIX

POSIX, is a well-known family of OS standards.
POSIX defines the primitives, nomenclature and API which makes it easier to provide software compliance between operating systems.

This is especially useful with regard to programming heterogeneous devices like the Colibri VF61,
where (especially with the POSIX compatibility layer enabled),
the programming style for eCos applications dedicated for the Cortex-M4 core can vastly resemble that of Linux programs running on the Cortex-A5 core,
lowering the entry barrier for programmers.

To activate this package, use either ecosconfig (ecosconfig add CYGPKG_POSIX) or configtool:

	Choose Build ‣ Packages

	Select POSIX compatibility layer and click Add >>, then OK

	A new package, POSIX compatibility layer should appear in the package list - save your .ecc file and exit.

A sample application, verified to work as expected using the port can be found inside the port code, in the subdirectory compat/posix/current/tests/pthread1.c.

µITRON

µITRON is a the name of an Japanese open standard for RTOS, originally undertaken in 1984 under the guidance of Ken Sakamura.
eCos supports the µITRON version 3.02 specification, with complete “Standard functionality” (level S), plus many “Extended” (level E) functions.

More about ITRON and µITRON can be read in the following sources:

	introduction to ITRON project [http://www.ertl.jp/ITRON/panph98/panph98-e.html]

	µITRON3.0 specification [http://www.ertl.jp/ITRON/spec-e.html#ITRON3]

	Dr. Sakamura’s book: uITRON 3.0, An Open and Portable Real Time Operating System for Embedded Systems

Since eCos was designed with the µITRON guidelines in mind, it is not strictly necessary to “activate” this compatibility layer, as an eCos application may fulfill the standard anyway.
However, eCos provides a package named CYKPKG_UITRON setting some additional constraints, and adding it to the kernel is recommended for applications meant to be µITRON compliant.
To activate this package, use either ecosconfig (ecosconfig add CYGPKG_UITRON) or configtool:

	Choose Build ‣ Packages

	Select uITRON compatibility and click Add >>, then OK

	A new package, uITRON compatibility layer should appear in the package list - save your .ecc file and exit.

A sample application, verified to work as expected using the port can be found inside the port code, in the subdirectory compat/uitron/current/tests/test3.c

 Copyright 2014 - Antmicro Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual

Index

 Copyright 2014 - Antmicro Ltd.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		ECos for Toradex Colibri VF61 Freescale Vybrid CoM - manual »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014 - Antmicro Ltd.
 Created using Sphinx 1.3.1.

_static/file.png

_static/down.png

_static/logo-200.png
) antmicro

EMBEDDED SYSTEMS.

